ER stress modulates apoptosis in A431 cell subjected to EtNBSe-PDT via the PERK pathway.

2021 
Abstract Photodynamic therapy (PDT) is a promising modality against various cancers including squamous cell carcinoma (SCC) with which the induction of apoptosis is an effective mechanism. Here, we initially describe the preclinical activity of 5-ethylamino-9-diethylaminobenzo [a] phenoselenazinium(EtNBSe)-mediated PDT treatment in SCC. Results of our studies suggest that EtNBSe-PDT provokes a cellular state of endoplasmic reticulum (ER) stress triggering the PERK/ eIF2α signaling pathway and induces the appearance of apoptosis in A431 cells at the meantime. With ER stress inhibitor 4-PBA or eIF2α inhibitor ISRIB, suppressing the EtNBSe-PDT induced ER stress substantially promotes apoptosis of A431 cells. Furthermore, we demonstrate that ATF4, whose expression is ER-stress-inducible and elevated in response to the PERK/eIF2α signaling pathway activation, contributes to cytoprotection against EtNBSe-PDT induced apoptosis. In a mouse model bearing A431 cells, EtNBSe shows intense phototoxicity and when associated with decreased ER stress, EtNBSe-PDT ameliorates tumor growth. Taken together, our study reveals an antagonistic activity of ER stress against EtNBSe-PDT treatment via inhibiting apoptosis in A431 cells. With further development, these results provide a proof-of-concept that downregulation of ER stress response has a therapeutic potential to improve EtNBSe-PDT sensitivity in SCC patients via the promotion of induced apoptosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []