pH-Switchable Latexes Based on the Nonionic Amphiphilic Diblock Copolymer with a Chargeable End-Group on the Core-Forming Block.

2021 
Reversible addition-fragmentation transfer (RAFT) dispersion polymerization of styrene was performed in an ethanol-water mixture using a Z-group carboxylated poly(N-acryloylmorpholine) (PNAM) macro-RAFT agent, and dialysis was performed against water to produce the PNAMx-PSy-COOH (PS = polystyrene) diblock copolymer latexes. This new formula is developed for the fabrication of pH-switchable copolymer latexes through an end-group response approach. The PNAM44-PS134-COOH latex is unstable at suitably low pH values (pH ≤ 4), and these aggregated spherical nanoparticles are redispersed successfully by adding base as determined by analysis of their dynamic light scattering (DLS) diameters and transmission electron microscopy (TEM) data. Negative zeta potential (-19.4 mV at 0.02% w/w) of the original latex indicated that carboxylic acid end-groups were anchored on the surface of the PS core via the polymerization-induced self-assembly (PISA) process and exposed to the solvent. Protonation of carboxylate groups reduces the degree of hydration of the PS core with a great impact on the free energy of the core/solvent interface, inducing the aggregation of PNAM44-PS134-COOH latex particles. A comparative experiment where the carboxylic acid end-group is designed on the PNAM stabilizer block proves that no pH-switchable behavior occurs in this case. Moreover, the vesicle-like nanoparticles composed of PNAM44-PS428-COOH copolymers have an apparently anionic character (zeta potential ≈ -33.5 mV at 0.02% w/w) and are still pH-switchable with a lower critical flocculation point (pH 2-3). More importantly, the latex composed of PNAM118-PS151-COOH diblock copolymers is insensitive to the solution pH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []