Blocking the Charge Recombination with Diiodide Radicals by TiO2 Compact Layer in Dye-Sensitized Solar Cells

2019 
The addition of a compact titanium dioxide (TiO2) layer between the fluorine-doped tin oxide (FTO) coated glass substrate and the mesoporous TiO2 layer in the dye-sensitized solar cell (DSC) based on the iodide/triiodide redox couple (I−/I3−) is known to improve its current-voltage characteristics. The compact layer decreases the recombination of electrons extracted through the FTO layer with I3− around the maximum power point. Furthermore, the short-circuit photocurrent was improved, which previously has been attributed to the improved light transmittance and/or better contact between TiO2 and FTO. Here, we demonstrate that the compact TiO2 layer has another beneficial effect: it blocks the reaction between charge carriers in the FTO and photogenerated diiodide radical species (I2−•). Using photomodulated voltammetry, it is demonstrated that the cathodic photocurrent found at bare FTO electrodes is blocked by the addition of a compact TiO2 layer, while the anodic photocurrent due to reaction with I2−• is maintained. (Less)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    6
    Citations
    NaN
    KQI
    []