APPLYING NEW METHODS TO RESEARCH REACTOR ANALYSIS.

2004 
Detailed reactor physics and safety analyses are being performed for the 20 MW D{sub 2}O-moderated research reactor at the National Institute of Standards and Technology (NIST). The analyses employ state-of-the-art calculational methods and will contribute to an update to the Final Safety Analysis Report (FSAR). Three-dimensional MCNP Monte Carlo neutron and photon transport calculations are performed to determine power and reactivity parameters, including feedback coefficients and control element worths. The core depletion and determination of the fuel compositions are performed with MONTEBURNS to model the reactor at the beginning, middle, and end-of-cycle. The time-dependent analysis of the primary loop is determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels. A statistical analysis used to assure protection from critical heat flux (CHF) is performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF are determined with MCNP. Evaluations have been performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pumpmore » seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. These analyses are significantly more rigorous than those performed previously. They have provided insights into reactor behavior and additional assurance that previous analyses were conservative and the reactor was being operated safely.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []