Impact of hydrate saturation on water permeability in hydrate-bearing sediments

2019 
Abstract Permeability of the hydrate-bearing sediments critically affects the hydrate dissociation process as well as the rate and efficiency of gas production. Reported permeability values are observed to be widely are very scattered owing to the dependence on multiple factors such as experimental conditions and test procedures. It is critical that the permeability is measured accurately to enable prediction of long-term gas production using numerical simulation for an economic development of hydrate-bearing reservoirs. In this study, the tetrahydrofuran (THF) hydrates that exhibit pore habits of the pore-filling pattern are formed in sediments, and the water permeability is quantified as a function of hydrate saturation. The results show that a decrease in the permeability for an increase in the hydrate saturation. Based on the measured values that are bounded by Kozeny grain-coating and pore-filling models, the fitting parameters of the empirical permeability models are suggested for use in numerical simulation of long-term hydrate dissociation. Wave velocity measurements reveal pore habits of pore-filling pattern of THF hydrates in the sediments with S h h  > 0.6. The numerical simulation results obtained using the complementary pore-network model suggest that the THF hydrates in the sediments may form in small clusters with an average patch size of ∼4 pores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    54
    Citations
    NaN
    KQI
    []