Spectral emission of flames from laboratory-scale vegetation fires

2009 
Outdoor experiments were conducted on a laboratory scale to study the infrared radiation emission of vegetation flames. Measurements were made in the spectral range 1000–4500 cm–1, using a compact and portable Fourier-transform infrared spectrometer including an HgCdTe/InSb dual detector. Flame emission was compared with the reference signal emitted by a blackbody surface at 1000 K. We carried out two different series of fire experiments: a series of fires in a 0.45 m-diameter steel tray and a series of wind-tunnel fires. Various types of wildland fuels were used: wood wool, vine branches, dry wood, and Kermes oak branches. From a qualitative observation of emission spectra, it appears that the main contribution comes from the hot gaseous combustion products, with a low-intensity background radiation from soot, as the small-scale flames in these experiments were optically thin. It was also found that, in the flaming combustion zone of the fuel bed, both phases contribute to infrared emission. Our results, in combination with existing data on the absorptivity of vegetation, give a better understanding of radiative transfer in vegetation fires and show how total radiative properties could be deduced from spectral measurements. We believe that this preliminary study provides pilot data for future studies in this area.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    39
    Citations
    NaN
    KQI
    []