IR femtosecond laser micro-filaments in diamond visualized by inter-band UV-photoluminescence

2020 
Single microscale filaments were produced in monocrystalline Ia-type diamond by 1030 nm, 300 fs laser pulses tightly focused at NA = 0.3 and different peak powers, visualized by transverse imaging and spectrally characterized by longitudinal micro-spectroscopy, using intrinsic UV A-band photoluminescence (PL) with its peak at about 430 nm. Power-dependent scaling relationships for the local PL yield and diameters of the accompanying luminous micro-channels of recombining electron-hole plasma indicate a transition from three-photon absorption to free-carrier plasma absorption, as the consequent energy deposition mechanisms at increasing peak laser power. Power-dependent elongation of the luminous micro-channels versus peak laser power fitted by a Marburger formula yields, on average a diffraction-based estimate of 0.6 MW critical power for self-focusing within the diamond at the pump laser wavelength of 1030 nm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    8
    Citations
    NaN
    KQI
    []