Chikusetsu saponin IVa regulates glucose uptake and fatty acid oxidation: implications in antihyperglycemic and hypolipidemic effects

2015 
Objectives The aim of this study is to investigate antidiabetic effects and molecular mechanisms of the chemical Chikusetsu saponin IVa (CHS) that isolated from root bark of Aralia taibaiensis, which has multiple pharmacological activity, such as relieving rheumatism, promoting blood circulation to arrest pain and antidiabetic action. Methods Rats with streptozotocin/nicotinamide-induced type 2 diabetes mellitus (T2DM) and insulin-resistant myocytes were used. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and acetyl-CoA carboxylase were quantified by immunoblotting. Assays of glucose uptake, fatty acid oxidation, glucose transporter 4 (GLUT4) translocation and carnitine palmitoyl transferase-1 (CPT-1) activity were performed. Key findings Chronic oral administration of CHS effectively decreases blood glucose, triglyceride, free fatty acid (FFA) and low density lipoprotein-cholesterol levels in T2DM rats. In both normal and insulin-resistant C2C12 myocytes, CHS activates AMPK, and increases glucose uptake or fatty acid oxidation through enhancing membrane translocation of GLUT4 or CPT-1 activity respectively. Knockdown of AMPK significantly diminishes the effects of CHS on glucose uptake and fatty acid oxidation. Conclusions CHS is a novel AMPK activator that is capable of bypassing defective insulin signalling and could be useful for the treatment of T2DM or other metabolic disorders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    13
    Citations
    NaN
    KQI
    []