Quantitative examination of demineralized and remineralized dental lesions using photothermal radiometry and modulated luminescence

2010 
The development of photothermal techniques to detect thermal waves in biological tissue has occurred with a concomitant advancement in the extraction of material thermophysical properties and knowledge regarding the internal structure of a medium. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in different fluoride-containing remineralization solutions. PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. A coupled diffuse-photon-density-wave and thermal-wave theoretical model was used to quantitatively evaluate changes in thermal and optical properties of sound, demineralized and remineralized enamel. Amplitude increase and phase lag decrease in demineralized samples were consistent with higher scatter of the diffuse-photon density field and thermal wave confinement to near-surface regions. A remineralized sample illustrates a complex interplay between surface and subsurface processes, confining the thermal-wave centroid toward the dominating layer. PTR-LUM sensitivity to changes in tooth mineralization coupled with optical and thermal property extraction illustrates the technique's potential for non-destructive evaluation of multi-layered turbid media.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []