Antimicrobial resins with quaternary ammonium salts as a supplement to combat the antibiotic resistome in drinking water treatment plants

2019 
Abstract The increasing finding of pathogens and antibiotic resistance genes (ARGs) in drinking water has become one of the most challenging global health threats worldwide. However, conventional disinfection strategies in drinking water treatment plants (DWTPs) require further optimization in combating the antibiotic resistome. Here, we show that antimicrobial resins with quaternary ammonium salts (AMRs-QAS) exhibit great potentials in diminishing specific potential pathogens that relatively resist chlorine or UV disinfection in DWTPs, and comprehensive analyses using microscopy and fluorescence techniques revealed that the antimicrobial capacity of AMRs-QAS mainly proceed via the bacterial adsorption and cell membrane dissociation. Moreover, a total of 15 among 30 selected ARGs, as well as 4 selected potential pathogens including Pseudomonas aeruginosa, Bacillus subtili s, Escherichia coli and Staphylococcus aureus were all detected in the source water. Coupling the AMRs-QAS with 0.2 mg/L chlorine resulted in higher removal efficiencies than chlorination (2 mg/L) or UV disinfection (400 mJ cm −2 ) for all the detected pathogens and ARGs in drinking water and significantly decreased the relative abundances of Pseudomonas aeruginosa, Bacillus subtili s, Escherichia coli , as well as all the detected ARGs ( p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    14
    Citations
    NaN
    KQI
    []