Impact of carrier lifetime enhancement using high temperature oxidation on 15 kV 4H-SiC P-GTO thyristor

2016 
The impact of the lifetime enhancement process using high temperature thermal oxidation method on 4H-SiC P-GTOs was investigated. 15 kV 4H-SiC P-GTOs with 140 μm thick drift layers, with and without 1450°C lifetime enhancement oxidation (LEO) process, were compared. The LEO process increased the average carrier lifetime in p-type epi layer from 0.9 μs to 6.25 μs, and it was observed that the effectiveness of the lifetime enhancement process was very sensitive to the doping concentration. The device with the LEO process showed a significant reduction in forward voltage drop and a substantially lower holding current, as expected from the carrier lifetime measurements. However, a slight reduction in blocking capability was also observed from the devices treated with LEO process. The common emitter current gain (β) of the wide base test NPN BJT was approximately 10X higher for the wafer with LEO process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    9
    Citations
    NaN
    KQI
    []