Au纳米棒对Na3PO4:Sm3+/Er3+/Yb3+薄膜发光的增强 Enhancement of Na3PO4:Sm3+/Er3+/Yb3+ Film Luminescence by Au Nanorods

2016 
本文用溶胶–凝胶法制备了Na3PO4:Sm3+/Er3+/Yb3+发光薄膜,并通过Au纳米棒的局域表面等离子体共振效应(Localized Surface Plasmon Resonance, LSPR)实现了发光薄膜的发光增强。本文采用扫描电子显微镜(Scanning Electron Microscope, SEM)、UV-3600型紫外–可见–近红外分光光度计、FSL920型组合紫外–可见–中红外稳态时间分辨荧光光谱仪(Photoluminescence,PL)等测试手段对薄膜进行了分析表征。结果表明:Na3PO4:Sm3+/Er3+/Yb3+发光薄膜表面均一;薄膜发出600~615 nm范围的橙红光,随着激发波长的增加,薄膜的发射光谱中心存在明显的红移,最大红移范围50 nm,同时其发光强度降低。在370 nm激发光的激发下,薄膜的荧光发射强度最大;利用Au纳米棒的LSPR效应,实现了发光薄膜的发光增强,最大增强因子为2.5。 Selecting the sol-gol method, we obtained the Na3PO4:Sm3+/Er3+/Yb3+ luminous films and achieved its luminescence enhancement with Localized Surface Plasmon Resonance (LSPR) of Au-nanorods. The films were analyzed characterized by using scanning electron microscope (SEM), UV-3600 UV-Vis-near infrared spectrophotometer, FSL920 combination of UV-Vis-in infrared steady time- resoled photofluorescence spectrometer (PL) and other means of testing. The results show that the uniform surface of Na3PO4:Sm3+/Er3+/Yb3+ luminous films is slippy. Films can emit orange light whose range is between 600 - 615 nm. With the increase of the excitation wavelength, the films’ emission spectrum center has obvious red shift about 50 nm and intensity decrease. When the excitation wavelength is equal to 370 nm, the fluorescence emission of the film is the strongest. Via the LSPR of the Au-nanorods, the luminescence enhancement of the luminescent thin films is realized. The enhancement factor increases to 2.5 times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []