Dispersal and species’ responses to climate change

2013 
Dispersal is fundamental in determining biodiversity responses to rapid climate change, but recently acquired ecological and evolutionary knowledge is seldom accounted for in either predictive methods or conservation planning. We emphasise the accumulating evidence for direct and indirect impacts of climate change on dispersal. Additionally, evolutionary theory predicts increases in dispersal at expanding range margins, and this has been observed in a number of species. This multitude of ecological and evolutionary processes is likely to lead to complex responses of dispersal to climate change. As a result, improvement of models of species’ range changes will require greater realism in the representation of dispersal. Placing dispersal at the heart of our thinking will facilitate development of conservation strategies that are resilient to climate change, including landscape management and assisted colonisation. Synthesis This article seeks synthesis across the fields of dispersal ecology and evolution, species distribution modelling and conservation biology. Increasing effort focuses on understanding how dispersal influences species' responses to climate change. Importantly, though perhaps not broadly widely-recognised, species' dispersal characteristics are themselves likely to alter during rapid climate change. We compile evidence for direct and indirect influences that climate change may have on dispersal, some ecological and others evolutionary. We emphasise the need for predictive modelling to account for this dispersal realism and highlight the need for conservation to make better use of our existing knowledge related to dispersal.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    261
    Citations
    NaN
    KQI
    []