Fuzzy Logic Speed Control of Permanent Magnet Synchronous Machine and Feedback Voltage Ripple Reduction in Flux-Weakening Operation Region

2020 
Voltage feedback flux-weakening control has the advantages of simplicity and robustness against parameter variation. However, due to less voltage control margin in the flux-weakening region, the increased feedback voltage ripple could deteriorate the system performance in the flux-weakening region and may even cause oscillation. In this article, based on a nonsalient permanent magnet synchronous machine, the steady-state feedback voltage ripple in the flux-weakening region are analyzed first. It shows that the feedback voltage ripple caused by the current command ripple could dominate in some flux-weakening regions. Consequently, the speed bandwidth based on the conventional speed proportional-integral (PI) controller in the flux-weakening region can be hardly increased, which leads to poor dynamic performance. In order to obtain both fast speed dynamics and less steady-state ripple, especially in the flux-weakening region, an adaptive fuzzy logic (FLC) speed controller is designed and compared with the conventional speed PI controller. With the adaptive FLC, the dc-link voltage utilization can be increased and better flux-weakening capability can be obtained. Finally, the improved performances are verified by the experimental results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    17
    Citations
    NaN
    KQI
    []