Converting solar energy into laser radiation using a fullerene-oxygen-iodine laser with solar pumping
2009
The concept of a system for directly converting solar energy into laser radiation on the basis of a fullerene-oxygen-iodine laser has been developed. It is shown that this system has advantages and is competitive with other similar solar-energy-conversion systems. Various versions of singlet-oxygen generators based on solid-phase fullerene-containing structures are analyzed. Based on this analysis, it is concluded that such a generator needs to be operated with molecular oxygen passing through a porous fullerene-containing coating deposited on a substrate with a porous structure to compensate the loss of oxygen in the coating as it undergoes photodesorption. Experimental research into the processes of solar-energy conversion into laser radiation has been carried out, using a prototype that has been developed of a fullerene-oxygen-iodine laser with pumping by a solar-radiation simulator. Lasing in the pulsed-periodic regime of laser operation has been obtained, with repetition rate 10Hz and mean output power 30W. Lasing energy per unit volume of the active medium of 9J/L has been achieved.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
3
Citations
NaN
KQI