Techno-economic analysis of a sCO2 power plant for waste heat recovery in steel industry

2020 
Abstract Industrial facilities release a large amount of heat as a by-product of their processes. To improve environmental performance and increase process profitability, a portion of the waste heat can be recovered and employed for power generation by recovery systems. Supercritical carbon dioxide (sCO2) plants are emerging as potential alternatives to the well-established technologies for waste heat recovery (WHR) power generation in heavy industry. This paper offers a preliminary techno-economic analysis of a waste heat-to-power system based on a sCO2 closed-loop for a heavy-industrial process. By conducting a parametric investigation on the WHR sCO2 system’s key design parameters, a number of preferable configurations from a thermodynamic perspective were initially identified; they were subsequently analyzed from the economic point of view in terms of net present value (NPV) and pay-back period (PBP). The privileged WHR system configuration achieved an overall efficiency of 30.4% and a power output of 21.6 kWe, providing an NPV of almost US k$ 376 with a PBP of approximately 4.5 years.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []