The Human Kinesin Kif18A\'s Neck Linker Permits Navigation of Microtubule Bound Obstacles within the Mitotic Spindle

2018 
Mitotic chromosome alignment is essential for the robust separation of genetic material into daughter cells. In mammalian cells, this process requires the function of Kif18A, a kinesin-8 motor protein. Kif18A confines chromosome movement to the mitotic spindle equator by accumulating at the plus-ends of kinetochore microtubule bundles (K-fibers), where it functions to suppress K-fiber dynamics. It is not understood how the motor accumulates at K-fiber plus-ends, a difficult feat requiring the motor to navigate protein dense microtubule tracks. Our data indicate that Kif18A9s relatively long (17 amino acid) neck linker is required for the motor9s accumulation at K-fiber plus-ends. Shorter neck linker (sNL) variants of Kif18A display a deficiency in K-fiber accumulation, especially on K-fibers near the center of the spindle. This pattern correlates with the more uniform concentration of the microtubule bundling protein HURP on central K-fibers compared to peripheral K-fibers. Depletion of HURP permits Kif18A sNL to accumulate on central K-fibers, while HURP overexpression reduces wild-type Kif18A9s ability to accumulate on this same K-fiber subset. Furthermore, single molecule assays indicate that Kif18A sNL motors are less proficient at navigating microtubules coated with the microtubule associated protein tau. Taken together, these results support a model in which Kif18A9s neck linker length permits efficient navigation of obstacles such as HURP to reach K-fiber ends during mitosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    0
    Citations
    NaN
    KQI
    []