Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15

2009 
Ordered mesoporous materials exhibit potential features to be used as controlled drug delivery systems, including their wide range of chemical compositions and their outstanding textural and structural properties. Therefore, it is possible to control the drug release kinetics by tailoring such parameters. In this paper, mesoporous materials such as MCM-48 and SBA-15, which present different pore sizes (3.7 and 8.8 nm) and structural characteristics (3D-bicontinuous cubic and 2D-hexagonal, respectively) have been synthesized to evaluate their application as drug delivery system and to determine their influence on release kinetic of ibuprofen. Moreover, a chemical modification of the SBA-15 mesoporous material with octadecyltrimethoxysilane has also been performed to study its influence on the release rate of ibuprofen. The structural characteristics (3D cubic and 2D hexagonal pore system) do not affect the release kinetic profiles of ibuprofen. On the contrary, the pore size affects highly to the release kinetic profiles from first-order kinetic to zero-order kinetic for MCM-48 and SBA-15, respectively. Moreover, the importance of surface functionalization was demonstrate through the very fast delivery of ibuprofen from SBA-15 mesoporous materials functionalized with octadecyl chains.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    124
    Citations
    NaN
    KQI
    []