Monitoring of glacier albedo from optical remote-sensing data:application to seasonal and annual surface mass balancesquantification in the French Alps for the 2000–2015 period
2017
Less than 0.25 % of the 250,000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000–2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal (threshold from 0.53 to 0.76). These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadows correction algorithm, although inter-annual comparisons are not affected by systematic errors.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI