Photodriven Dipole Reordering: Key to Carrier Separation in Metalorganic Halide Perovskites

2019 
Photodriven dipole reordering of the intercalated organic molecules in halide perovskites has been suggested to be a critical degree of freedom, potentially affecting physical properties, device performance, and stability of hybrid perovskite-based optoelectronic devices. However, thus far a direct atomically resolved dipole mapping under device operation condition, that is, illumination, is lacking. Here, we map simultaneously the molecule dipole orientation pattern and the electrostatic potential with atomic resolution using photoexcited cross-sectional scanning tunneling microscopy and spectroscopy. Our experimental observations demonstrate that a photodriven molecule dipole reordering, initiated by a photoexcited separation of electron–hole pairs in spatially displaced orbitals, leads to a fundamental reshaping of the potential landscape in halide perovskites, creating separate one-dimensional transport channels for holes and electrons. We anticipate that analogous light-induced polarization order tra...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    20
    Citations
    NaN
    KQI
    []