Statistically Optimized Spatial Filtering in Decoding Steady-State Visual Evoked Potentials Based on Task-Related Component Analysis

2020 
Task-related component analysis (TRCA) has been the most effective spatial filtering method in implementing high-speed brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs). TRCA is a data-driven method, in which spatial filters are optimized to maximize inter-trial covariance of time-locked electroencephalographic (EEG) data, formulated as a generalized eigenvalue problem. Although multiple eigenvectors can be obtained by TRCA, the traditional TRCA-based SSVEP detection considered only one that corresponds to the largest eigenvalue to reduce its computational cost. This study proposes using multiple eigen-vectors to classify SSVEPs. Specifically, this study integrates a task consistency test, which statistically identifies whether the component reconstructed by each eigenvector is task-related or not, with the TRCA-based SSVEP detection method. The proposed method was evaluated by using a 12-class SSVEP dataset recorded from 10 subjects. The study results indicated that the task consistency test usually identified and suggested more than one eigenvectors (i.e., spatial filters). Further, the use of additional spatial filters significantly improved the classification accuracy of the TRCA-based SSVEP detection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []