Pulse-DrivenNonvolatile Perovskite Memory with PhotovoltaicRead-Out Characteristics

2019 
This paper presents a unique GdFe0.8Ni0.2O3 perovskite thin film for use in pulse-controlled nonvolatile memory devices (combined with a SrTiO3 (STO) substrate) without the need for an electrical-stressing read-out process. The use of pulse voltage imposes permanent downward/upward polarization states on GFNO, which enables greater energy density and higher energy efficiency than the unpoled state for memory. The two polarization states produce carrier migrations in opposing directions across the GFNO/STO interface, which alter the depletion region of the device, as reflected in photovoltaic short-circuit current density (Jsc) values. Modulating the duration (varying the number of sequential pulses but fixing the pulse width and delay time) and direction of continuous pulse voltage is an effective method for controlling Jsc, thereby allowing the fabrication of nondestructive, light-tunable, nonvolatile memory devices. In experiments, Jsc in the downward polarized state was approximately 6 times greater th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    7
    Citations
    NaN
    KQI
    []