Measuring the velocity field of a shear-coaxial, cryogenic flame in a high-pressure rocket thrust chamber

2020 
Abstract High-speed imaging was used to visualize one of the transcritical flames in a multi-injector, sub-scale rocket thrust chamber at pressures up to 80 bar. Image correlation velocimetry (ICV) was applied to the imaging to obtain quantitative information on the flow field from the shear-coaxial injectors. ICV was used to track surface irregularities on the liquid oxygen (LOX) jet in imaging filtered to blue wavelengths. By choosing the interrogation area carefully, only the LOX jet was effectively tracked, excluding the coaxial H2 flow, and the time-averaged velocity field was reconstructed. Due to the transient nature of the tracked features, which frequently change shape or disappear, the averaged ICV result underestimates the absolute values of velocity. Therefore, the averaged values were scaled by the mean of the instantaneous velocity maxima. A second, reference measurement of LOX jet propagation speed was calculated using dynamic mode decomposition (DMD). The results were consistent following the aforementioned correction of the ICV values. Comparing the ICV fields for two different operating conditions showed a marked difference in the axial velocity distribution and lateral expansion of the LOX jet, demonstrating the potential of the method in studying injection in rocket combustion chambers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []