Real-Time Monitoring of Heavy Metals in Healthcare via Twistable and Washable Smartsensors.

2020 
The wearable and integrated sensing platform is a promising choice for developing real-time analytic electronics with clear advantages but still poses challenges, such as the realization of high precision, low limit of detection (LOD), moderate mechanical capacity, integration, and miniaturization. In this work, a simple printed wearable smartsensor has been fabricated with the aid of electrochemical plating methods with bismuth (Bi) films. The excellent sensing behaviors, including linear relationship, selectivity, stability, repeatability, and the LOD at ppb levels, have been obtained by this smartsensor. Additionally, the highly flexible textile-based sensor exhibits potential application on the substrates of daily cloth, sports T-shirt, and sports wristbands, and it maintains good stability under repeated deformations of washing and twisting. Importantly, integrated with printed circuit board, single chip micyoco, and Bluetooth modules, a smartsensing platform is successfully acquired for real-time detection of heavy metals (e.g., Zn, Cd, Pb, etc.). Finally, actual samples of human sweat, seawater, cosmetics, and drinking water have been remotely successfully demonstrated for detection by this smartsensor, enabling a great promise for fast on-site screening of samples in practical application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    7
    Citations
    NaN
    KQI
    []