Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4.

2022 
Abstract Morphology adjustment is a feasible method to change the physicochemical properties of photocatalysts. The issue that excessively thick tube wall of tubular g-C3N4 is not conducive to the electron migration from inside to the surface thus inhibiting the separation of photogenerated carriers has always been ignored. Potassium ions were used to regulate the structure of the tubular supramolecular precursor by breaking hydrogen bonds, thereby promoting the synthesis of delaminated laminar tubular g-C3N4 (K-CN), which not only shortened the transfer distance of photogenerated electrons but also provided abundant reaction active sites. Experiments and DFT calculations were combined to reveal the details of the physicochemical properties of K-CN. The photocatalytic capacity of K-CN for tetracycline hydrochloride (TCH) degradation and H2O2 generation were 83% and 133 μM, respectively. This work not only synthesized a novel delaminated tubular g-C3N4 but also provided a strategy and inspiration for structure and performance optimization for tubular g-C3N4.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    2
    Citations
    NaN
    KQI
    []