Changes in the level of cytosolic calcium, nitric oxide and nitric oxide synthase activity during platelet aggregation: an in vitro study in platelets from normal subjects and those with cirrhosis
2008
Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis. In the present investigation, we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium (Ca2+), nitric oxide (NO) and NO synthase (NOS) activity in liver cirrhosis. The aim of the present study was to investigate whether the production of NO by NOS and level of cytosolic Ca2+ influence the aggregation of platelets in patients with cirrhosis of the liver. Agonist-induced aggregation and the simultaneous changes in the level of cytosolic Ca2+, NO and NOS were monitored in platelets of patients with cirrhosis. Platelet aggregation was also measured in the presence of the eNOS inhibitor, diphenylene iodinium chloride (DIC). The level of agonist-induced platelet aggregation was significantly low in the platelets of patients with cirrhosis compared with that in platelets from normal subjects. During the course of platelet aggregation, concomitant elevation in the level of cytosolic Ca2+ was observed in normal samples, whereas the elevation was not significant in platelets of patients with cirrhosis. A parallel increase was observed in the levels of NO and NOS activity. In the presence of the eNOS inhibitor, platelet aggregation was enhanced and accompanied by an elevated calcium level. The inhibition of platelet aggregation in liver cirrhosis might be partly due to greater NO formation by eNOS. Defective Ca2+ release from the internal stores to the cytosol may account for inhibition of aggregation of platelets in cirrhosis. The NO-related defective aggregation of platelets in patients with cirrhosis found in our study is of clinical importance, and the underlying mechanism of such changes suggests a possible therapeutic strategy with cell-specific NO blockers.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
14
Citations
NaN
KQI