Inhibiting Caspase Cleavage of Huntingtin Reduces Toxicity and Aggregate Formation in Neuronal and Nonneuronal Cells

2000 
Abstract Huntington's disease is a neurodegenerative disorder caused by CAG expansion that results in expansion of a polyglutamine tract at the extreme N terminus of huntingtin (htt). htt with polyglutamine expansion is proapoptotic in different cell types. Here, we show that caspase inhibitors diminish the toxicity of htt. Additionally, we define htt itself as an important caspase substrate by generating a site-directed htt mutant that is resistant to caspase-3 cleavage at positions 513 and 530 and to caspase-6 cleavage at position 586. In contrast to cleavable htt, caspase-resistant htt with an expanded polyglutamine tract has reduced toxicity in apoptotically stressed neuronal and nonneuronal cells and forms aggregates at a much reduced frequency. These results suggest that inhibiting caspase cleavage of htt may therefore be of potential therapeutic benefit in Huntington's disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    338
    Citations
    NaN
    KQI
    []