Mutations at Novel Sites in pmrA/B and lpxA/D Genes and Absence of Reduced Fitness in Colistin-Resistant Acinetobacter baumannii from a Tertiary Care Hospital, India.

2020 
Background: Colistin resistance in Acinetobacter baumannii, the last resort drug for serious infections, is emerging worldwide. There has been paucity of data on this aspect from India, which is one of the largest producers of colistin. We studied colistin resistance in A. baumannii and characterized the isolates with respect to resistance mechanisms and virulence. Methods: A total of 365 A. baumannii isolates were studied. Antimicrobial susceptibility testing was performed as per standards. Colistin resistance mechanisms were studied by mutation detection in pmrA/B and lpxA/C/D genes, phenotypic loss of lipopolysaccharide, presence of mcr1-5 genes, and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) effects. Biofilm formation, desiccation survival, and growth kinetics were studied and statistically analyzed for colistin-resistant and colistin-susceptible isolates. Results: All the colistin-resistant isolates (9, 2.5%) showed multiple mutations at novel sites in pmrA/B and/or lpxA/D genes with reversion of resistance with CCCP. Majority of these isolates (6, 66.6%) were from patients without prior colistin therapy. All received prior carbapenems. The resistant isolates demonstrated no significant difference in biofilm formation and desiccation survival but were slow growers. Conclusion: Mutations in pmrA/B and/or lpxA/D genes were the main resistance mechanism in these colistin-resistant isolates that showed no reduction in fitness.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []