A facile low-cost paper-based SERS substrate for label-free molecular detection

2019 
Abstract We introduce a facile and low-cost method for fabricating gold nanostructures on cellulose filter paper (CFP) to prepare a paper-based surface-enhanced Raman scattering (SERS) sensor for label-free molecular detection. Polymerized dopamine (PD) was used as an adhesive layer on the CFP and simultaneously functioned as a reducing agent for gold nanoparticle (AuNP) nucleation. The size of the AuNPs was dependent on the pH of the gold precursor solution, and nanoparticles with an average size of 102 nm were formed on the PD-coated CFP at a pH 3, exhibiting high SERS activity. Finite-difference time-domain (FDTD) simulations of the electromagnetic field enhancement of AuNPs with different sizes and interparticle distances were performed to identify the origin of the SERS effect. The developed paper-based SERS substrate showed uniform and excellent molecular sensitivity with a limit of detection (LOD) of 10 −7 M for methylene blue, as measured by a portable Raman spectrometer. Furthermore, as a field application test, surfaces of apples were pretreated with diquat (DQ) and paraquat (PQ) pesticides, which were then detected down to a concentration of 1 ppm after simple attachment of the sensor on the apple peels and performing a SERS measurement. The developed paper-based SERS sensor is expected to be applicable as a label-free sensor for a variety of chemical and biological molecules.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    28
    Citations
    NaN
    KQI
    []