KSHV dysregulates bulk macroautophagy, mitophagy and UPR to promote endothelial to mesenchymal transition and CCL2 release, key events in viral-driven sarcomagenesis.

2020 
Kaposi's Sarcoma-associated Herpesvirus (KSHV) is the causative agent of KS, an aggressive neoplasm that mainly occurs in immune-compromised patients. Spindle cells represent the main feature of this aggressive malignancy and arise from KSHV-infected endothelial cells undergoing endothelial to mesenchymal transition (EndMT), which changes their cytoskeletal composition and organization. As in epithelial to mesenchymal transition (EMT), EndMT is driven by transcription factors such as SNAI1 and ZEB1 and implies a cellular reprogramming mechanism regulated by several molecular pathways, particularly PI3K/AKT/MTOR. Here we found that KSHV activated MTOR and its targets 4EBP1 and ULK1 and reduced bulk macroautophagy and mitophagy to promote EndMT, activate ER stress/ Unfolded Protein Response (UPR), and increase the release of the pro-angiogenic and pro-inflammatory chemokine CCL2 by HUVEC cells. This study suggests that the manipulation of macroautophagy, mitophagy, and UPR and the interplay between the three could be a promising strategy to counteract EndMT, angiogenesis, and inflammation, the key events of KSHV-driven sarcomagenesis. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    5
    Citations
    NaN
    KQI
    []