Are COVID-19 models blind to the social determinants of health? A systematic review protocol.

2021 
Introduction Infectious disease models are important tools to inform public health policy decisions. These models are primarily based on an average population approach and often ignore the role of social determinants in predicting the course of a pandemic and the impact of policy interventions. Ignoring social determinants in models may cause or exacerbate inequalities. This limitation has not been previously explored in the context of the current pandemic, where COVID-19 has been found to disproportionately affect marginalised racial, ethnic and socioeconomic groups. Therefore, our primary goal is to identify the extent to which COVID-19 models incorporate the social determinants of health in predicting outcomes of the pandemic. Methods and analysis We will search MEDLINE, EMBASE, Cochrane Library and Web of Science databases from December 2019 to August 2020. We will assess all infectious disease modelling studies for inclusion of social factors that meet the following criteria: (a) focused on human spread of SARS-CoV-2; (b) modelling studies; (c) interventional or non-interventional studies; and (d) focused on one of the following outcomes: COVID-19-related outcomes (eg, cases, deaths), non-COVID-19-related outcomes (ie, impacts of the pandemic or control policies on other health conditions or health services), or impact of the pandemic or control policies on economic outcomes. Data will only be extracted from models incorporating social factors. We will report the percentage of models that considered social factors, indicate which social factors were considered, and describe how social factors were incorporated into the conceptualisation and implementation of the infectious disease models. The extracted data will also be used to create a narrative synthesis of the results. Ethics and dissemination Ethics approval is not required as only secondary data will be collected. The results of this systematic review will be disseminated through peer-reviewed publication and conference proceedings. PROSPERO registration number CRD42020207706.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []