Cholesterol Efflux and Atheroprotection Advancing the Concept of Reverse Cholesterol Transport

2012 
High-density lipoprotein (HDL) has been proposed to have several antiatherosclerotic properties, including the ability to mediate macrophage cholesterol efflux, antioxidant capacity, antiinflammatory properties, nitric oxide–promoting activity, and ability to transport proteins with their own intrinsic biological activities.1 HDL particles are critical acceptors of cholesterol from lipid-laden macrophages and thereby participate in the maintenance of net cholesterol balance in the arterial wall and in the reduction of proinflammatory responses by arterial cholesterol-loaded macrophages. The pathways that regulate HDL-mediated macrophage cholesterol efflux and disposition of cholesterol involve cell membrane–bound transporters, plasma lipid acceptors, plasma proteins and enzymes, and hepatic cellular receptors (Figure 1). From the earliest proposed concept for HDL-mediated cholesterol efflux,2,3 the concentration of the cholesterol content in HDL particles has been considered a surrogate measurement for the efficiency of the “reverse cholesterol transport” (RCT) process; however, macrophage-derived cholesterol represents a minor component of the cholesterol transported by HDL particles.4–7 One important pathway for cholesterol-mediated efflux from macrophage foam cells involves interaction between the ATP-binding cassette transporter A1 (ABCA1) and cholesterol-deficient and phospholipid-depleted apolipoprotein (apo) A-I complexes (pre-β migrating HDL or very small HDL [HDL-VS]; Figure 2).1,8 Subsequently, the ATP-binding cassette transporter G1 (ABCG1) mediates macrophage cholesterol efflux through interactions (Figure 3) with spherical, cholesterol-containing α-HDL particles (small HDL [HDL-S], medium HDL [HDL-M], large HDL [HDL-L], and very large (HDL-VL).1 In contrast, the scavenger receptor class B type I (SR-BI) is a multifunctional receptor that mediates bidirectional lipid transport in the macrophage, which is dependent on the content of cholesterol in lipid-laden macrophages. A more established role for SR-BI in cholesterol trafficking involves selective uptake of cholesteryl esters from mature HDL by the liver. Recent studies suggest that polymorphisms in SR-BI contribute to the functional capacity of this cholesterol
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    151
    References
    656
    Citations
    NaN
    KQI
    []