language-icon Old Web
English
Sign In

Probabilistic Sequence Modeling

2020 
This chapter presents a powerful class of probabilistic models for financial data. Many of these models overcome some of the severe stationarity limitations of the frequentist models in the previous chapters. The fitting procedure demonstrated is also different—the use of Kalman filtering algorithms for state-space models rather than maximum likelihood estimation or Bayesian inference. Simple examples of hidden Markov models and particle filters in finance and various algorithms are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []