Combining Comparison Functions and Finite Element Approximations in CFD

1995 
In a variety of potential flow applications, the modal element method has been shown to significantly reduce the numerical grid, employ a more precise grid termination boundary condition, and give theoretical insight to the flow physics. The method employs eigenfunctions to replace the numerical grid over significant portions of the flow field. Generally, a numerical grid is employed around obstacles with complex geometry while eigenfunctions are applied to regions in the flow field where the boundary conditions can easily be satisfied. To handle a wider class of computational fluid dynamics (CFD) problems, the present paper extends the modal element to include function approximations which do not satisfy the governing differential equation. To accomplish this task, a double modal series approximation and weighted residual constraints are developed to force the comparison functions to satisfy the governing differential equation and to interface properly with the finite element solution. As an example, the method is applied to the problem of potential flow in a channel with two-dimensional cylindrical like obstacles. The calculated flow fields are in excellent agreement with exact analytical solutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []