Catalytic properties of a bacterial acylating acetaldehyde dehydrogenase: Evidence for several active oligomeric states and coenzyme A activation upon binding

2013 
Abstract Until the last decade, two unrelated aldehyde dehydrogenase (ALDH) superfamilies, i.e. the phosphorylating and non-phosphorylating superfamilies, were known to catalyze the oxidation of aldehydes to activated or non-activated acids. However, a third one was discovered by the crystal structure of a bifunctional enzyme 4-hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase (DmpFG) from Pseudomonas sp. strain CF600 (Manjasetty et al., Proc. Natl. Acad. Sci. USA 100 (2003) 6992–6997). Indeed, DmpF exhibits a non-phosphorylating CoA-dependent ALDH activity, but is structurally related to the phosphorylating superfamily. In this study, we undertook the characterization of the catalytic and structural properties of MhpEF from Escherichia coli , an ortholog of DmpFG in which MhpF converts acetaldehyde, produced by the cleavage of 4-hydroxy-2-ketovalerate by MhpE, into acetyl-CoA. The kinetic data obtained under steady-state and pre-steady-state conditions show that the aldehyde dehydrogenase, MhpF, is active as a monomer, a unique feature relative to the phosphorylating and non-phosphorylating ALDH superfamilies. Our results also reveal that the catalytic properties of MhpF are not dependent on its oligomeric state, supporting the hypothesis of a structurally and catalytically independent entity. Moreover, the transthioesterification is shown to be rate-limiting and, when compared with a chemical model, its catalytic efficiency is increased 10 4 -fold. Therefore, CoA binding to MhpF increases its reactivity and optimizes its positioning relative to the thioacylenzyme intermediate, thus enabling the formation of an efficient deacylation complex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    10
    Citations
    NaN
    KQI
    []