Noise Mapping and Removal in Complex-Valued Multi-Channel MRI via Optimal Shrinkage of Singular Values

2021 
In magnetic resonance imaging (MRI), noise is a limiting factor for higher spatial resolution and a major cause of prolonged scan time, owing to the need for repeated scans. Improving the signal-to-noise ratio is therefore key to faster and higher-resolution MRI. Here we propose a method for mapping and reducing noise in MRI by leveraging the inherent redundancy in complex-valued multi-channel MRI data. Our method leverages a provably optimal strategy for shrinking the singular values of a data matrix, allowing it to outperform state-of-the-art methods such as Marchenko-Pastur PCA in noise reduction. Our method reduces the noise floor in brain diffusion MRI by 5-fold and remarkably improves the contrast of spiral lung \(^{19}\)F MRI. Our framework is fast and does not require training and hyper-parameter tuning, therefore providing a convenient means for improving SNR in MRI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []