Study of neurovascular coupling functions for transient focal cerebral ischemia in rats using electrocorticography functional photoacoustic microscopy (ECoG-fPAM)

2013 
Recently, the functional photoacoustic microscopy (fPAM) system has been proven to be a reliable imaging technique for measuring the total hemoglobin concentration (HbT), cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO 2 ) in single cerebral blood vessels of rats. In this study, we report for the first time the combination of electrocorticography (ECoG) recordings and fPAM (ECoG-fPAM) to investigate functional hemodynamic changes and neuro-vascular coupling in single cortical arterioles of rats with electrical forepaw stimulation after photothrombotic stroke. Because of the optical focusing nature of our fPAM system, photo-induced ischemic stroke targeting on single cortical arterioles can be easily conducted with simple adaptation. Functional cerebral HbT, CBV and SO 2 changes associated with the induced stroke in selected arterioles from the anterior cerebral artery system were imaged with a 36 × 65-μm spatial resolution. The ECoG-fPAM system complements existing imaging techniques and has the potential to offer a favorable tool for explicitly studying cerebral hemodynamics and neuro-vascular coupling in small animal models of photo-induced ischemic stroke.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    6
    Citations
    NaN
    KQI
    []