On Householder Sets for Matrix Polynomials

2019 
Abstract We present a generalization of Householder sets for matrix polynomials. After defining these sets, we analyze their topological and algebraic properties, which include containing all of the eigenvalues of a given matrix polynomial. Then, we use instances of these sets to derive the Gersgorin set, weighted Gersgorin set, and weighted pseudospectra of a matrix polynomial. Finally, we show that Householder sets are intimately connected to the Bauer-Fike theorem by using these sets to derive Bauer-Fike-type bounds for matrix polynomials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []