Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction

2016 
Recent studies indicate that inflammasomes serve as intracellular machinery to initiate classical cytokine-mediated inflammatory responses and play a crucial role in the pathogenesis of cardiovascular diseases. However, whether or not the activation of endothelial inflammasomes directly causes cell dysfunction or tissue injury without recruitment of inflammatory cells is unknown. We explored the role of endothelial cell inflammasome activation in mediating tight junction disruption, a hallmark event of endothelial barrier dysfunction leading to endothelial hyperpermeability in diabetes. We used confocal microscopy to study the formation and activation of NOD-like receptor family pyrin domain containing-3 (Nlrp3) inflammasomes and expression of tight junction proteins in coronary arteries of streptozotocin-treated diabetic wild type and Nlrp3 gene-deleted mice. We found that Nlrp3 ablation prevented inflammasome activation and tight junction disassembly in the coronary arterial endothelium of diabetic mice. Similarly, Nlrp3 gene silencing prevented high glucose-induced down-regulation of tight junction proteins in cultured mouse vascular endothelial cells (MVECs). The high glucose-induced tight junction disruption and consequent endothelial permeability were attributed to increased release of the high mobility group box protein-1 (HMGB1), which is dependent on enhanced Nlrp3 inflammasome activity. Mechanistically, reducing reactive oxygen species (ROS) production abolished high glucose-induced inflammasome activation, tight junction disruption, and endothelial hyperpermeability in MVECs. Collectively, the ROS-dependent activation of endothelial Nlrp3 inflammasomes by hyperglycemia may be an important initiating mechanism to cause endothelial dysfunction. These effects could contribute to the early onset of endothelial injury in diabetes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    60
    Citations
    NaN
    KQI
    []