Thermodynamic and spectroscopic study of the binding of dimethyltin(IV) by citrate at 25 °C

2006 
Thermodynamic (potentiometric and calorimetric) and spectroscopic ( 1 H NMR, 119 Sn Mossbauer) studies were performed in aqueous solution in order to characterize the interaction of dimethyltin(IV) cation with citrate ligand. Six species {(CH 3 ) 2 Sn(cit) - ; [(CH 3 ) 2 Sn] 2 (cit) 2 2- ; (CH 3 ) 2 Sn(cit)H 0 ; (CH 3 ) 2 Sn(cit)OH 2- ; [(CH 3 ) 2 Sn] 2 (cit)OH 0 ; [(CH 3 ) 2 Sn] 2 (cit)(OH) 2 - } were found. All the species formed in this system are quite stable and formation percentages are fairly high. For example, at pH = 7.5 and C (CH3)2Sn = C cit = 10 mmol l -1 , E% for [(CH 3 ) 2 Sn] 2 (cit)(OH) 2 - and (CH 3 ) 2 Sn(cit)OH 2- species reaches 65%. Overall thermodynamic parameters obtained show that the main contribution to stability is entropic in nature. Thermodynamic parameters were discussed in comparison with a simple tricarboxylate ligand (1,2,3-propanetricarboxylate). Two empirical relationships were derived from thermodynamic formation parameters. Spectroscopic results fully confirm the speciation model defined potentiometrically and show the mononuclear species to have an eq-(CH 3 ) 2 Tbp structure with different arrangements around the metal, while for [(CH 3 ) 2 Sn] 2 (cit)(OH) 2 - there are two different Sn(IV) environments, namely trans-(CH 3 ) 2 octahedral and cis-(CH 3 ) 2 Tbp.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    23
    Citations
    NaN
    KQI
    []