Neural population dynamics underlying expected value computation

2020 
Computation of expected values, i.e., probability times magnitude, seems to be a dynamic integrative process performed in the brain for efficient economic behavior. However, neural dynamics underlying this computation remain largely unknown. We examined (1) whether four core reward-related regions detect and integrate the probability and magnitude cued by numerical symbols and (2) whether these regions have different dynamics in the integrative process. Extractions of mechanistic structure of neural population signal demonstrated that expected-value signals simultaneously arose in central part of orbitofrontal cortex (cOFC, area 13m) and ventral striatum (VS). These expected-value signals were incredibly stable in contrast to weak and unstable signals in dorsal striatum and medial OFC. Notably, temporal dynamics of these stable expected-value signals were unambiguously distinct: sharp and gradual signal evolutions in cOFC and VS, respectively. These intimate dynamics suggest that cOFC and VS compute the expected-values with unique time constants, as distinct, partially overlapping processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []