Temperature scaling of hot electrons produced by a tightly focused relativistic-intensity laser at 0.5 kHz repetition rate

2010 
The energy spectrum of hot electrons emitted from the interaction of a relativistically intense laser with an Al plasma is measured at a repetition rate of 0.5 kHz by accumulating ∼103 highly reproducible laser shots. In the 1017–2×1018 W/cm2 range, the temperature of electrons escaping the plasma along the specular direction scales as (Iλ2)0.64±0.05 for p-polarized pulses incident at 45°. This scaling is in good agreement with three-dimensional particle-in-cell simulations and a simple model that estimates the hot-electron temperature by considering the balance between the deposited laser intensity and the energy carried away by those electrons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    32
    Citations
    NaN
    KQI
    []