Defining Low-Dimensional Projections to Guide Protein Conformational Sampling

2017 
Abstract Exploring the conformational space of proteins is critical to characterize their functions. Numerous methods have been proposed to sample a protein's conformational space, including techniques developed in the field of robotics and known as sampling-based motion-planning algorithms (or sampling-based planners). However, these algorithms suffer from the curse of dimensionality when applied to large proteins. Many sampling-based planners attempt to mitigate this issue by keeping track of sampling density to guide conformational sampling toward unexplored regions of the conformational space. This is often done using low-dimensional projections as an indirect way to reduce the dimensionality of the exploration problem. However, how to choose an appropriate projection and how much it influences the planner's performance are still poorly understood issues. In this article, we introduce two methodologies defining low-dimensional projections that can be used by sampling-based planners for protein conform...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    5
    Citations
    NaN
    KQI
    []