Cylindrical vector eigenfunction expansion of Green dyadics for multilayered anisotropic media and its application to four-layered forest

2004 
A complete eigenfunction expansion of the dyadic Green's functions (DGFs) for planar, arbitrary multilayered anisotropic media using cylindrical vector wave functions is presented. These formulations are constructed based on the principle of scattering superposition. For the scattering dyadic Green's function in each layer, the scattering coefficients of TE and TM modes are determined from the boundary conditions matched at the planar interfaces. The explicit representation of the DGFs after reduction to the isotropic case agrees well with the existing results corresponding to the isotropic media. The general DGFs for multilayered anisotropic media are then reduced to those for a four-layered forest where the trunk layer is modeled as anisotropic medium. Application is further made for radio-wave propagation through forests of a four-layered geometry, whereas it is shown how these Green dyadic formulations are used in a practical way and how the field distributions due to a dipole can be obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    22
    Citations
    NaN
    KQI
    []