Earth-Abundant Molecular Z-Scheme Photoelectrochemical Cell for Overall Water-Splitting

2019 
A push-pull organic dye and a cobaloxime catalyst were successfully co-grafted on NiO and CuGaO$_2$ to form efficient molecular photocathodes for H$_2$ production with >80% Faradaic efficiency. CuGaO$_2$ is emerging as a more effective p-type semiconductor in photoelectrochemical cells and yields a photocathode with four-fold higher photocurrent densities and 400 mV more positive onset photocurrent potential compared to the one based on NiO. Such an optimized CuGaO$_2$ photocathode was combined with a TaONǀCoO$_x$ photoanode in a photoelectrochemical cell. Operated in this Z-scheme configuration, the two photoelectrodes produced H$_2$ and O$_2$ from water with 87% and 88% Faradaic efficiency, respectively, at pH 7 under visible light and in the absence of an applied bias, equating to a solar to hydrogen conversion efficiency of 5.4×10$^{−3}$%. This is, to the best of our knowledge, the highest efficiency reported so far for a molecular-based noble metal-free water splitting Z-scheme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    49
    Citations
    NaN
    KQI
    []