Proximity corrected accurate in-die registration metrology

2014 
193nm immersion lithography is the mainstream production technology for the 20nm and 14nm logic nodes. Multi-patterning of an increasing number of critical layers puts extreme pressure on wafer intra-field overlay, to which mask registration error is a major contributor [1]. The International Technology Roadmap for Semiconductors (ITRS [2]) requests a registration error below 4 nm for each mask of a multi-patterning set forming one layer on the wafer. For mask metrology at the 20nm and 14nm logic nodes, maintaining a precision-to-tolerance (P/T) ratio below 0.25 will be very challenging. Full characterization of mask registration errors in the active area of the die will become mandatory. It is well-known that differences in pattern density and asymmetries in the immediate neighborhood of a feature give rise to apparent shifts in position when measured by optical metrology systems, so-called optical proximity effects. These effects can easily be similar in magnitude to real mask placement errors, and uncorrected can result in mis-qualification of the mask. Metrology results from KLA-Tencor’s next generation mask metrology system are reported, applying a model-based algorithm [3] which includes corrections for proximity errors. The proximity corrected, model-based measurements are compared to standard measurements and a methodology presented that verifies the correction performance of the new algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []