Downhill Protein Folding Modules as Scaffolds for Broad-Range Ultrafast Biosensors

2012 
Conformational switches are macromolecules that toggle between two states (active/inactive or folded/unfolded) upon specific binding to a target molecule. These molecular devices provide an excellent scaffold for developing real-time biosensors. Here we take this concept one step beyond to build high-performance conformational rheostat sensors. The rationale is to develop sensors with expanded dynamic range and faster response time by coupling a given signal to the continuous (rather than binary) unfolding process of one-state downhill folding protein modules. As proof of concept we investigate the pH and ionic-strength sensing capabilities of the small α-helical protein BBL. Our results reveal that such a pH/ionic-strength sensor exhibits a linear response over 4 orders of magnitude in analyte concentration, compared to the 2 orders of magnitude for switches, and nearly concentration-independent microsecond response times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    16
    Citations
    NaN
    KQI
    []