Efficient Gene Silencing by Adenine Base Editor Mediated Start Codon Mutation

2019 
Abstract Traditional CRISPR/Cas9-based gene knockouts are generated by introducing DNA double-strand breaks (DSBs), but this may cause excessive DNA damage or cell death. CRISPR-based cytosine base editors (CBEs) and adenine base editors (ABEs) can facilitate C-to-T or A-to-G exchanges, respectively, without DSBs. CBEs have been employed in a gene knockout strategy: CRISPR-STOP or i-STOP changes single nucleotides to induce in-frame stop codons. However, this strategy is not applicable for some genes, and the unwanted mutations in CBE systems have recently been reported to be surprisingly significant. As a variant, the ABE systems mediate precise editing and has only rare unwanted mutations. In this study, we implemented a new strategy to i nduce gene silencing (i-Silence) with an ABE-mediated start codon mutation from ATG to GTG or ACG. Using both in vitro and in vivo model systems, we showed that the i-Silence approach is efficient and precise for producing a gene knockout. In addition, the i-Silence strategy can be employed to analyze ∼17,804 human genes and can be used to mimic 147 kinds of pathogenic diseases caused by start codon mutations. Altogether, compared to other methods, the ABE-based i-Silence method is a safer gene KO strategy, and it has promising application potential.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    13
    Citations
    NaN
    KQI
    []