ShearFAST: a user-friendly in vitro toolset for high throughput, inexpensive fluid shear stress experiments.

2020 
Fluid shear stress is a key modulator of cellular physiology in vitro and in vivo, but its effects are under-investigated due to requirements for complicated induction methods. Herein we report the validation of ShearFAST; a smartphone application that measures the rocking profile on a standard laboratory cell rocker and calculates the resulting shear stress arising in tissue culture plates. The accuracy with which this novel approach measured rocking profiles was validated against a graphical analysis, and also against measures reported by an 8-camera motion tracking system. ShearFASTs angle assessments correlated well with both analyses (r ≥0.99, p ≤0.001) with no significant differences in pitch detected across the range of rocking angles tested. Rocking frequency assessment by ShearFAST also correlated well when compared to the two independent validatory techniques (r ≥0.99, p ≤0.0001), with excellent reproducibility between ShearFAST and video analysis (mean frequency measurement difference of 0.006 ± 0.005Hz) and motion capture analysis (mean frequency measurement difference of 0.008 ± 0.012Hz). These data make the ShearFAST assisted cell rocker model make it an attractive approach for economical, high throughput fluid shear stress experiments. Proof of concept data presented reveals a protective effect of low-level shear stress on renal proximal tubule cells submitted to simulations of pretransplant storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []