Structural and Electrical Properties of K(Ta, Nb)O3 Thin Films with the Variation of Sintering Temperature

2020 
In this study, KTa0.55Nb0.45O₃ (KTN) thin films were manufactured by using Chemical Solution Deposition (CSD) method with variations in the sintering temperature and were investigated in order to apply their applicability in memory devices. The KTN thin films were made after coating the PZT bufferlayer on Pt/Ti/SiO₂/Si substrate. Each layer was dried at 200°C for 5 min to remove any organic materials and pyrolyzed at 400°C for 10 min. Finally, the layers were sintered for 30 min under an oxygen atmosphere, respectively. The pattern of KTN thin films showed a preference to the (100) and (200) orientations. Also, an increase in the sintering temperature caused the KTN crystalline peak intensities to also increase. When looking at the results from the Scanning Electron Microscope and Atomic Force Microscope data, the average grain size and root mean square roughness (Rrms) of KTN thin films were 109~157 nm and about 4 nm, respectively. Typical dielectric dispersion characteristics were observed in which the dielectric constant decreases with an increase of the applied frequency. The specimen sintered at 750°C showed the highest dielectric constant of 769 at 1 kHz.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []